Author:
Wang Hong-Wen,Kuo Chien-Hung,Liao Tsai-Huei,Lin Ren-Jay,Cheng Syh-Yuh
Abstract
Mesoporous barium titanate powders having a 100- to 300-nm size were prepared by hydration and condensation of titanium tetra-isopropoxide and barium precursors in the presence of an organic surfactant, tetradecylamine, which was used as a self-assembly micelle. The processing and sintering of these mesoporous barium titanate powders has been investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to identify the structural characteristics and morphologies of the powders. Mesoporous wormhole-like powders with surface areas around 53 ∼ 108 m2/g could be obtained after removing the micelle organics by calcination at 400 °C for 3 h. Powders derived using barium hydroxide were found to form a larger pore size and a higher surface area. The addition of acetic acid was also effective in increasing the surface area. A formation mechanism for the mesoporous structure is depicted. Heat treatment caused the mesoporous spheres to shrink, and 155- ∼ 330-nm grain sizes were readily obtained after pressureless sintering at 900 ∼ 1000 °C for 1 h in air.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献