SIMFUEL and UO2 Solubility and Leaching Behavior Under Anoxic Conditions

Author:

Quiñones J.,Garcia-Serrano J.,Serrano J.A.,Díaz-Arocas P.,Almazan J.L.R.

Abstract

ABSTRACTMost of performance assessment models for spent fuel repository safety consider radiolysis-self-oxidation to describe fuel matrix release. Nevertheless, due to radioactive decay, the matrix dissolution process under reducing conditions would be controlled by the solubility limit of the steady U solid phase. In this work, leaching behaviour under anoxic and reducing conditions of spent fuel unirradiated chemical analogues (natural U02 and SIMFUEL) in simulated groundwater is studied.The trial procedure was performed taking into account the possibility that the uranium oxide to be leachated had an initial outer layer with an oxidation state higher than the matrix. This oxidised layer would produce an overestimation on U concentration in solution for the solid studied. In order to avoid this effect, a complete replacement of the leaching solutions was carried out after several days of experimentation. After this initial experimental step, the steady state concentrations obtained in all tests were more than one order of magnitude lower than before. Uranium concentrations found in reducing and anoxic experiments for both U02 and SIMFUEL tests were very close. This fact is attributed to similarity in environmental conditions (pH, Eh, etc.). From that, it can be assured that steady state concentration obtained is independent of solid leached (UO2 or SIMFUEL). In order to assess which is the solid phase that could control the solubility of U, the experimental concentration obtained was compared with results from geochemical code EQ3/6. According with the theoretical calculations U4O9 would be the controlling pure phase formed in whole experimental tests described in this work. Comparisons with bibliography data from leaching experiments of spent nuclear fuel were made as well.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3