The Effect of Oxygen on The Electrical Activation and Diffusion of Ion-Implanted Boron

Author:

Kyllesbech Larsen K.,Stoik P. A.,Privitera V.,van Berkum J. G. M.,de Boer W. B.,Marinino G.,Cowern N. E. B.,Huizing H. G. A.

Abstract

ABSTRACTTransient enhanced diffusion (TED) and electrical activation (EA) of ion-implanted boron during rapid thermal annealing has been investigated using three types of boron doped p-type Si (100) substrates: (a) Cz 20 Ωcm, (b) 3 μm thick 20 Ωcm epitaxial Si layer (epi-layer) grown on a 20 Ωcm Cz substrate, and (c) 3 μm thick 20 Ωcm epi-layer grown on a 5 mΩcin Fz substrate. The level of oxygen is known to decrease from material type (a) to (c). The samples were implanted with 20 keV, 5×1013cm−2boron and subjected to rapid thermal annealing (RTA) at various temperatures and times. The EA and TED were studied using spreading resistance profiling (SRP) and secondary ion mass spectrometry (SIMS), respectively. Although the amount of TED is almost identical for the three substrates, the EA is found to be significantly higher in the epi-layers compared to Cz substrates. It is speculated that the trapping of vacancies by oxygen in the ion-damaged region leads to an increase in the interstitial supersaturation during annealing, which then results in enhanced boron clustering and reduced electrical activation in the peak of the implanted profile.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3