Depth-sensing indentation at macroscopic dimensions

Author:

Thurn Jeremy,Morris Dylan J.,Cook Robert F.

Abstract

A macroscopic-scale depth-sensing indentation apparatus with the ability to be mounted on an inverted microscope for in situ observation of contact events was calibrated using the Oliver and Pharr [J. Mater. Res. 7, 1564 (1992)] procedure with a two-parameter area function. The calibrated Vickers tip was used to determine the projected contact area at peak load and the modulus and hardness of a variety of non-metallic materials through deconvolution of the measured load-displacement traces. The predicted contact area was found to be identical to the measured area of residual contact impressions. Furthermore, for transparent ceramic materials the projected contact area during loading was found to be the same as the area measured from the diagonal of post-indentation residual contact impressions. The modulus and hardness values deconvoluted from the load–displacement traces were compared with independent measurements. The effects of sample clamping, column compliance, and tip radius on the load–displacement data and inferred materials properties were also examined. It is suggested that the simplicity of instrumentation and operation, combined with the ability to observe indentations optically, even in situ, makes macroscopic-scale depth-sensing indentation ideal for fundamental studies of contact mechanics.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3