Application of Instrumented Indentation Test and Neural Networks to determine the constitutive model of in-situ austenitic stainless steel components

Author:

Ma Quoc-PhuORCID,Basterrech Sebastián,Halama Radim,Omacht Daniel,Měsíček Jakub,Hajnyš Jiří,Platoš Jan,Petrů Jana

Abstract

AbstractOver the last few decades, Instrumented Indentation Test (IIT) has evolved into a versatile and convenient method for assessing the mechanical properties of metals. Unlike conventional hardness tests, IIT allows for incremental control of the indenter based on depth or force, enabling the measurement of not only hardness but also tensile properties, fracture toughness, and welding residual stress. Two crucial measures in IIT are the reaction force (F) exerted by the tested material on the indenter and the depth of the indenter (D). Evaluation of the mentioned properties from FD curves typically involves complex analytical formulas that restricts the application of IIT to a limited group of materials. Moreover, for soft materials, such as austenitic stainless steel SS304L, with excessive pile-up/sink-in behaviors, conducting IIT becomes challenging due to improper evaluation of the imprint depth. In this work, we propose a systematic procedure for replacing complex analytical evaluations of IIT and expensive physical measurements. The proposed approach is based on the well-known potential of Neural Networks (NN) for data-driven modeling. We carried out physical IIT and tensile tests on samples prepared from SS304L. In addition, we generated multiple configurations of material properties and simulated the corresponding number of IITs using Finite Element Method (FEM). The information provided by the physical tests and simulated data from FEM are integrated into an NN, to produce a parametric mapping that can predict the parameters of a constitutive model based on any given FD curve. Our physical and numerical experiments successfully demonstrate the potential of the proposed approach.

Funder

Czech Science Foundation

Ministerstvo školství, Mládeže a Tělovýchovy

European Union

Technical University of Ostrava

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3