Processing and morphology of permeable polycrystalline silicon thin films

Author:

Dougherty G. G.,Pisano A. A.,Sands T.

Abstract

It is known that thin films of polycrystalline silicon, deposited under the right conditions, can be permeable to HF-based etching solutions. While these films offer unique capabilities for microfabrication, both the poor reproducibility of the permeable film properties and the lack of a detailed physical understanding of the material have limited their application. This work provides a methodical study of the relationship between process, microstructure, and properties of permeable polycrystalline silicon thin films. It is shown that the permeability is a result of small pores, on the order of 10 nm, between the 100–200-nm hemispherical grains characteristic of the permeable film morphology. This morphology occurs only in nearly stress-free films grown in a narrow temperature range corresponding to the transition between tensile and compressive film growth regimes. This result strongly suggests that the monitoring of residual film stress can provide the process control needed to reliably produce permeable films. A simple kinetic model is proposed to explain the evolution of the morphology of the permeable films.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3