Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance

Author:

arghese Oomman K.,Gong Dawei,Paulose Maggie,Ong Keat G.,Grimes Craig A.,Dickey Elizabeth C.

Abstract

The effect of pore size and uniformity on the humidity response of nanoporous alumina, formed on aluminum thick films through an anodization process, is reported. Pore sizes examined range from approximately 13 to 45 nm, with a pore size standard deviations ranging from 2.6 to 7.8 nm. The response of the material to humidity is a strong function of pore size and operating frequency. At 5 kHz an alumina sensor with an average pore size of 13.6 nm (standard deviation 2.6 nm) exhibits a well-behaved change in impedance magnitude of 103 over 20% to 90% relative humidity. Increasing pore size decreases the humidity range over which the sensors have high sensitivity and shifts the operating range to higher humidity values. Cole–Cole plots of 5 to 13 MHz measured impedance spectra, modeled using equivalent circuits, are used to resolve the effects of water adsorption and ion migration within the adsorbed water layer. The presence of impurity ions within the highly ordered nano-dimensional pores, accumulated during the anodization process, appear highly beneficial for obtaining a substantial variation in measured impedance over a wide range of humidity values.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3