Author:
arghese Oomman K.,Gong Dawei,Paulose Maggie,Ong Keat G.,Grimes Craig A.,Dickey Elizabeth C.
Abstract
The effect of pore size and uniformity on the humidity response of nanoporous alumina, formed on aluminum thick films through an anodization process, is reported. Pore sizes examined range from approximately 13 to 45 nm, with a pore size standard deviations ranging from 2.6 to 7.8 nm. The response of the material to humidity is a strong function of pore size and operating frequency. At 5 kHz an alumina sensor with an average pore size of 13.6 nm (standard deviation 2.6 nm) exhibits a well-behaved change in impedance magnitude of 103 over 20% to 90% relative humidity. Increasing pore size decreases the humidity range over which the sensors have high sensitivity and shifts the operating range to higher humidity values. Cole–Cole plots of 5 to 13 MHz measured impedance spectra, modeled using equivalent circuits, are used to resolve the effects of water adsorption and ion migration within the adsorbed water layer. The presence of impurity ions within the highly ordered nano-dimensional pores, accumulated during the anodization process, appear highly beneficial for obtaining a substantial variation in measured impedance over a wide range of humidity values.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献