Author:
Kang B. W.,Goyal A.,Lee D. F.,Mathis J. E.,Specht E. D.,Martin P. M.,Kroeger D. M.,Paranthaman M.,Sathyamurthy S.
Abstract
We investigated the dependence of critical current density (Jc) on thickness of Yba2Cu3O7−δ (YBCO) films grown by pulsed laser deposition on (100) SrTiO3 (STO) and on rolling-assisted biaxially textured substrates (RABiTS). The thickness of YBCO films varied from 0.19 to 3 μm. The highest Jcs of 5.3 and 2.6 MA/cm2 at 77 K, self-field were obtained for 0.19-μm YBCO films on STO and RABiTS, respectively. Jc was found to decrease exponentially with YBCO thickness on both substrates. However, the results suggest different mechanisms are responsible for the Jc reduction in the two cases. On STO, growth of a-axis grains within c-axis films and broadening of the in-plane texture were observed in thick films. On RABiTS, degradation in cube texture as well as development of a porous surface morphology were found to correlate with film thickness.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献