Diffusion and Activation During Rapid Thermal Annealing of Implanted Boron in Silicon

Author:

Cowern N E B,Yallup K J,Godfrey D J,Hasko D G,McMahon R A,Ahmed H,Stobbs W M,McPhail D S

Abstract

ABSTRACTThe diffusion and activation of implanted boron in silicon during rapid thermal annealing (RTA) has been studied using the analytical techniques of SIMS, TEM, and sheet resistance measurements. Both crystalline and pre-amorphised silicon substrates were investigated. Data analysis in conjunction with a range of numerical models indicates some novel features of boron RTA, as well as accounting for previously observed features. In particular, a large transient diffusion enhancement coupled with an increase of electrical activity, are seen at short anneal times, in the case of crystalline silicon substrates. A non-equilibrium diffusion enhancement of a different type is also seen at much longer times, in both crystalline and pre-amorphised samples implanted to high doses. This second enhancement persists after all the precipitated boron formed on implantation has become substitutional. TEM studies show that the transient enhancement may be associated with the evolution of extended defect structures during the early stages of annealing. Both types of enhancement can be well represented by multiplying the ‘normal’ concentration-dependent diffusivity (with β=0.5) by a factor f>1.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference9 articles.

1. Electron beam system for rapid isothermal annealing of semiconductor materials and devices

2. Simulation of doping processes

3. 8 Cowern N.E.B. , Yallup K.J. and Godfrey D.J. , to be published

4. 1 McMillan G.B. , Shannon J.M. , Clegg J.B. and Ahmed H. , J. Appl. Phys., To be published (1986)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3