Agglomeration-Free Nanoscale Cobalt Silicide Film Formation Via Substrate Preamorphization

Author:

Pramanick S.,Patnaik B.K.,Rozgonyi G. A.

Abstract

AbstractWe have used preamorphization of silicon substrates as a process modification to suppress agglomeration during cobalt disilicide film formation. Planar, continuous and low resistivity (<21 μΩ-cm) silicide films less than 35 nm thick have been produced both on single crystal silicon and polysilicon. Nanoscale(<35 nm) silicide films are more susceptible to islanding phenomena since agglomeration is dependent onthe ratio of grain size to film thickness. Preamorphization prior to silicidation favorsa large increase in silicide nucleation rate, as well as reduction in critical nuclei size, both of which aid the formation of silicide with small grains. The resulting small grain silicides enable nanoscale films to remain below the critical grain size to thickness ratio for which thin films become morphologically unstable. An interphase void band which occurs between CoSi and CoSi2 layers, acts as a convenient diffusion marker and aids interpretation of the complex stability issues. Preamorphization prior to silicidation was also extended to heavily doped substrates to study the applicability of this approach for junctions and gate contacts. Silicidation of amorphized heavily boron doped substrates produces non uniform layers due to the collision of the advancing silicidation and SPE interfaces. A comparision of concurrent processing, i.e. simulatneous dopant activation and silicide formation, with conventional silicidation of Si+ preamorphized heavily doped(B) substrates is also presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference8 articles.

1. Kinetics of solid phase crystallization in amorphous silicon

2. [5[ Pramanick S. , Erokhin Y. N. , Patnaik B. K. , and Rozgonyi G. A. , submitted to Applied Physics Letters.

3. Stability of Nanoscale Cobalt Silicide Film Formation on Polysilicon

4. Agglomeration of Cobalt Silicide Films

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3