Lateral Epitaxy Formation Mechanism And Microstructure Of Selectively Grown Gan Structures

Author:

Zheleva Tsvetanka,Nam Ok-Hyun,Griffin Jason D.,Bremser Michael D.,Davis Robert F.

Abstract

AbstractThe microstructure and the lateral epitaxy mechanism of formation of homoepitaxially and selectively grown GaN structures within windows in SiO2 masks have been investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Three types of samples and each of their microstructures as a function of the geometry of the mask pattern and the selective growth parameters have been studied: GaN pyramids, GaN stripes oriented along [1100] and [1120] directions, and GaN continuous layers. Observations via TEM showed in all three types of samples that the laterally overgrown GaN exhibit four-to-six orders of magnitude reduction in the dislocation density compared to the vertically grown GaN films. Owing to the lateral epitaxy, the threading dislocations bend when the growth front changes from vertical to lateral, thus changing their character from being mostly threading dislocations of mixed or edge character, to being basal plane dislocations with lines parallel to the interfacial planes. The underlying GaN provided the crystallographic template for the initial vertical selective growth through the openings (windows) in the SiO2 mask. The GaN structures in these areas had a threading dislocations density of 108-1010 cm−2. Lateral growth of the GaN films over the amorphous SiO2 mask, resulted in a reduction of the dislocation density to <106 cm−2. The primary materials source for both the vertical and lateral growth of the structures was the vapor phase. Essentially no GaN deposited on the SiO2 because of the very low sticking coefficients of Ga and N species on SiO2. Thermal stress relaxation is responsible for the final morphology and microstructure in these selectively grown structures.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3