Abstract
ABSTRACTRaman spectroscopy is a very popular, non-destructive tool for the structural characterisation of carbons. Raman scattering from carbons is always a resonant process, in which those configurations whose band gaps match the excitation energy are preferentially excited. The Raman spectra of carbons do not follow the vibration density of states, but consist of three basic features, the G and D peaks around 1600 and 1350 cm-1 and an extra T peak, for UV excitation, at ∼980–1060 cm-1. TheRaman spectra at any wavelength depend on 1) clustering of the sp2 phase, 2)bond length and bond angle disorder, 3) presence of sp2 rings or chains, and 4) the sp2/sp3 ratio. It will be shown how the basic features of the Raman spectra vary by rationalising them within a three-stage model of order of carbons. It is shown how the three-stage model can account for the vast range of experimental data available for Raman experiments at any excitation wavelength. This model can also account for apparently contradictory trends reported in literature, since the clustering of the sp2 phase and the sp3 to sp2 conversion are separately treated.
Publisher
Springer Science and Business Media LLC
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献