Strain states and relaxation for $$\alpha$$-(Al$$_x$$Ga$$_{1-x}$$)$$_2$$O$$_3$$ thin films on prismatic planes of $$\alpha$$-Al$$_2$$O$$_3$$ in the full composition range: Fundamental difference of a- and m-epitaxial planes in the manifestation of shear strain and lattice tilt

Author:

Kneiß MaxORCID,Splith DanielORCID,von Wenckstern HolgerORCID,Lorenz MichaelORCID,Schultz ThorstenORCID,Koch NorbertORCID,Grundmann MariusORCID

Abstract

Abstract Pseudomorphic and relaxed $$\alpha$$ α -(Al$$_x$$ x Ga$$_{1-x}$$ 1 - x )$$_2$$ 2 O$$_3$$ 3 thin films are grown by combinatorial pulsed laser deposition in the entire composition range on prismatic a- and m-plane $$\alpha$$ α -Al$$_2$$ 2 O$$_3$$ 3 substrates. Pseudomorphic growth on m-plane sapphire has been achieved for $$x \ge 0.45$$ x 0.45 . A distinct difference between the a- and m-epitaxial plane is observed in reciprocal space map measurements being in agreement with continuum elasticity theory for rhombohedral heterostructures. While pseudomorphic layers on m-plane sapphire show a pronounced shear strain $$e'_5$$ e 5 along the c-axis direction, relaxed layers exhibit a global lattice tilt in the same direction. Both effects are not present on the a-epitaxial plane. Out-of-plane lattice constants as well as $$e'_5$$ e 5 are modeled as function of x employing elasticity theory, confirming theoretical values of the elastic stiffness tensor for $$\alpha$$ α -Ga$$_2$$ 2 O$$_3$$ 3 , especially the non-zero value of the $$C_{14}$$ C 14 component. Possible pyramidal slip systems for strain relaxation in c-axis direction are examined to explain and numerically model the difference in lattice tilt for the two substrate orientations. Graphic abstract

Funder

European Social Fund

Universität Leipzig in research profile area ”Complex Matter”

Leibniz Science Campus GraFOx

Leipzig School for Natural Sciences BuildMoNa

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3