Synthesis, structure, and Mössbauer spectroscopic studies on the heat-induced solid-phase redox reactions of hexakis(urea-O)iron(III) peroxodisulfate

Author:

Béres Kende Attila,Homonnay Zoltán,Barta Holló Berta,Gracheva Maria,Petruševski Vladimir M.,Farkas Attila,Dürvanger Zsolt,Kótai LászlóORCID

Abstract

AbstractAnhydrous hexakis(urea-O)iron(III)]peroxydisulfate ([Fe(urea-O)6]2(S2O8)3 (compound 1), and its deuterated form were prepared and characterized with single-crystal X-ray diffraction and spectroscopic (IR, Raman, UV, and Mössbauer) methods. Six crystallographically different urea ligands coordinate via their oxygen in a propeller-like arrangement to iron(III) forming a distorted octahedral complex cation. The octahedral arrangement of the complex cation and its packing with two crystallographically different persulfate anions is stabilized by extended intramolecular (N–H⋯O = C) and intermolecular (N–H⋯O–S) hydrogen bonds. The two types of peroxydisulfate anions form different kinds and numbers of hydrogen bonds with the neighboring [hexakis(urea-O)6iron(III)]3+ cations. There are spectroscopically six kinds of urea and three kinds (2 + 1) of persulfate ions in compound 1, thus to distinguish the overlapping bands belonging to internal and external vibrational modes, deuteration of compound 1 and low-temperature Raman measurements were also carried out, and the bands belonging to the vibrational modes of urea and persulfate ions have been assigned. The thermal decomposition of compound 1 was followed by TG-MS and DSC methods in oxidative and inert atmospheres as well. The decomposition starts at 130 °C in inert atmosphere with oxidation of a small part of urea (~ 1 molecule), which supports the heat demand of the transformation of the remaining urea into ammonia and biuret/isocyanate. The next step of decomposition is the oxidation of ammonia into N2 along with the formation of SO2 (from sulfite). The main solid product proved to be (NH4)3Fe(SO4)3 in air. In inert atmosphere, some iron(II) compound also formed. The thermal decomposition of (NH4)3Fe(SO4)3 via NH4Fe(SO4)2 formation resulted in α-Fe2O3. The decomposition pathway of NH4Fe(SO4)2, however, depends on the experimental conditions. NH4Fe(SO4)2 transforms into Fe2(SO4)3, N2, H2O, and SO2 at 400 °C, thus the precursor of α-Fe2O3 is Fe2(SO4)3. Above 400 °C (at isotherm heating), however, the reduction of iron(III) centers was also observed. FeSO4 formed in 27 and 75% at 420 and 490 °C, respectively. FeSO4 also turns into α-Fe2O3 and SO2 on further heating. Graphical abstract

Funder

Innovációs és Technológiai Minisztérium

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

European Regional Development Fund

ELKH Research Centre for Natural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference73 articles.

1. K.A. Béres, Z. Homonnay, L. Kvitek, Zs. Dürvanger, M. Kubikova, V. Harmat, F. Szilágyi, Zs. Czégény, P. Németh, L. Bereczki, V.M. Petruševski, M. Pápai, A. Farkas, L. Kótai, Thermally-induced solid-phase quasi-intramolecular redox reactions of [hexakis(urea-O)iron(III)] permanganate: an easy way to prepare (Fe, Mn)Ox catalysts for CO2 hydrogenation. Inorg. Chem. (2022). https://doi.org/10.1021/acs.inorgchem.2c02265

2. K.A. Béres, I.E. Sajó, Gy. Lendvay, L. Trif, V.M. Petruševski, B. Barta-Holló, L. Korecz, F.P. Franguelli, K. László, I.M. Szilágyi, L. Kótai, Solid-phase “Self-Hydrolysis” of [Zn(NH3)4MoO4@2H2O] involving enclathrated water—an easy route to a layered basic ammonium zinc molybdate coordination polymer. Molecules 26, 4022 (2021)

3. F.P. Franguelli, É. Kováts, Zs. Czégény, L. Bereczki, V.M. Petruševski, B. Barta-Holló, K.A. Béres, A. Farkas, I.M. Szilágyi, L. Kótai, Multi-centered solid-phase quasi-intramolecular redox reactions of [(Chlorido)Pentaamminecobalt(III)] permanganate—an easy route to prepare phase pure CoMn2O4 spinel. Inorganics 10, 18 (2022)

4. F.P. Franguelli, B. Barta-Holló, V.M. Petruševski, I.E. Sajó, Sz. Klébert, A. Farkas, E. Bódis, I.M. Szilágyi, R.P. Pawar, L. Kótai, Thermal decomposition and spectral characterization of di[carbonatotetraamminecobalt(III)] sulfate trihydrate and the nature of its thermal decomposition products. J. Therm. Anal. Calorim. 145, 2907 (2021)

5. I.E. Sajó, L.P. Bakos, I.M. Szilágyi, Gy. Lendvay, J. Magyari, M. Mohai, Á. Szegedi, A. Farkas, A. Jánosity, Sz. Klébert, L. Kótai, Unexpected sequential NH3/H2O Solid/gas phase ligand exchange and quasi-intramolecular self-protonation yield [NH4Cu(OH)MoO4], a photocatalyst misidentified before as (NH4)2Cu(MoO4)2. Inorg. Chem. 57, 13679 (2018)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3