Multi-Centered Solid-Phase Quasi-Intramolecular Redox Reactions of [(Chlorido)Pentaamminecobalt(III)] Permanganate—An Easy Route to Prepare Phase Pure CoMn2O4 Spinel

Author:

Franguelli Fernanda Paiva,Kováts Éva,Czégény Zsuzsanna,Bereczki Laura,Petruševski Vladimir M.ORCID,Barta Holló BertaORCID,Béres Kende AttilaORCID,Farkas AttilaORCID,Szilágyi Imre MiklósORCID,Kótai LászlóORCID

Abstract

We synthesized and structurally characterized the previously unknown [Co(NH3)5Cl](MnO4)2 complex as the precursor of CoMn2O4. The complex was also deuterated, and its FT-IR, far-IR, low-temperature Raman and UV-VIS spectra were measured as well. The structure of the complex was solved by single-crystal X-ray diffraction and the 3D-hydrogen bonds were evaluated. The N-H…O-Mn hydrogen bonds act as redox centers to initiate a solid-phase quasi-intramolecular redox reaction even at 120 °C involving the Co(III) centers. The product is an amorphous material, which transforms into [Co(NH3)5Cl]Cl2, NH4NO3, and a todorokite-like solid Co-Mn oxide on treatment with water. The insoluble residue may contain {Mn4IIIMnIV2O12}n4n−, {Mn5IIIMnIVO12}n5n− or {MnIII6O12}n6n− frameworks, which can embed 2 × n (CoII and/or CoIII) cations in their tunnels, respectively, and 4 × n ammonia ligands are coordinated to the cobalt cations. The decomposition intermediates decompose on further heating via a series of redox reactions, forming a solid CoIIMIII2O4 spinel with an average size of 16.8 nm, and gaseous N2, N2O and Cl2. The CoMn2O4 prepared in this reaction has photocatalytic activity in Congo red degradation with UV light. Its activity strongly depends on the synthesis conditions, e.g., Congo red was degraded 9 and 13 times faster in the presence of CoMn2O4 prepared at 550 °C (in air) or 420 °C (under N2), respectively.

Funder

European Union

Ministry for Innovation and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3