Materials Issues In X-Ray Mask Repair by Focused Ion Beams

Author:

Melngailis John

Abstract

AbstractIn x-ray mask repair high Z absorber features, such as gold or tungsten, must be removed or added. The main challenges are the small lateral dimensions (0.25 μm and below) and the thickness of the absorbers (˜ 0.5 μm) The focused ion beam appears to be the best tool developed to meet this challenge. Unwanted features are removed by ion milling while missing absorber is reconstructed using ion induced deposition from a locally piped-in precursor gas. The high aspect ratio of the features complicates both of these processes. Milling away 0.5 μm thick absorber can lead to redeposition of the sputtered material on neighboring features. The crystal grains of the absorber mill at different rates depending on orientation which results in nonuniform features. A possible alternative which only works with W absorber is to use ion assisted etching. In ion induced deposition a precursor gas such as dimethylgold hexafluoro acetylacetonate is provided by a capillary tube aimed at the region scanned by the ion beam. The incident Ga+ ions, usually at energies in the 25–100 keV range, dissociate the adsorbed precursor molecules leaving a deposit of gold mixed with carbon. The carbon content can approach 50 atomic % resulting in an x-ray attenuation which is about one half of that of pure gold. A number of unexplored materials science issues are associated with mask repair including: the reduction of the carbon content, redeposition both from milling and from induced deposition, milling as a function of crystal orientation and energy, and deposition of high aspect features. The technology is well enough developed so that mask repair of 0.25 μm features can be considered. However, a better understanding of the materials science aspects of x-ray mask repair will help to advance the state-of-the-art.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference45 articles.

1. [45] Harriott L.R. , Kola R.R. , and Celler. G.K. Proc. of SPIE, Electron-Beam. X-ray and Ion Beam Submicrometer. Lithographics for Manufacturing III (San Jose Feb. 28-Mar. 5, 1993) to be published.

2. [44] Kola R.R. , Celler G.K. , and Harriott. L.R. Proc. of MRS, Symp. A. Beam-Solid Interactions: Fundamentals and Beam applications (Boston, Nov. 30 - Dec. 4, 1992) to be published.

3. In situ stress monitoring and deposition of zero-stress W for x-ray masks

4. Formation of monolithic masks for 0.25 μm x‐ray lithography

5. Focused Ga ion beam etching characteristics of GaAs with Cl2

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3