Heteroepitaxy on (001) Silicon: Growth Mechanisms and Defect Formation.

Author:

Pirouz P.,Ernst F.,Cheng T. T.

Abstract

AbstractIn the growth of thin films of compound semiconductors on (001) silicon substrates by vapor deposition techniques, it is usual to employ a two-step process. In this method, an initial (buffer) layer is first grown at a relatively low temperature; once a continuous film has formed on the substrate, its temperature is raised for the subsequent bulk growth. Carrying out the growth in a one-step process by heating the substrate to the final temperature before allowing the gases into the CVD reactor usually results in a polycrystalline aggregate. In this paper, classical nucleation and growth mechanisms are used to explain-the reasons for the different morphology of the one-step and two-step growth films.The heteroepitaxial films on (001) silicon often contain a high density of stacking faults and twins. The occurrence of these planar defects is usually attributed to stresses that arise from lattice mismatch and/or thermal mismatch (differences in coefficients of thermal expansion) between the substrate and the epilayer. It is argued that, in fact, mismatch stresses play a minor role in the generation of planar defects. Instead, an alternative mechanism for their formation is proposed which is based on the facetted shape of nuclei and errors in stacking of {111} planes which occur during deposition on the facets.Conventional and high resolution transmission electron microscopy have been used to investigate three systems grown by CVD or MOCVD: SiC/Si, GaAs/Si and GaP/Si. These systems have different lattice and thermal mismatches, and the results support the proposed model for the formation of defects.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3