Output Power Characteristics of Mg2Si and the Fabrication of a Mg2Si TE Module with a Unileg Structure

Author:

Nemoto Takashi,Iida Tsutomu,Oguni Yohei,Sato Junichi,Matsumoto Atsunobu,Sakamoto Tatsuya,Miyata Takahiro,Nakajima Tadao,Taguchi Hirohisa,Nishio Keishi,Takanashi Yoshifumi

Abstract

AbstractIn order to restrain global warming and to realize a sustainable global energy system, further enhancements in energy efficiency are required. One reliable technology for reducing greenhouse gas emissions and the consumption of fossil fuel is thermoelectric technology, which can directly convert heat into electricity and consequently increases the energy conversion efficiency of power generation by combustion. Magnesium silicide (Mg2Si) is a promising candidate for a thermal-to-electric energy-conversion material at operating temperatures ranging from 500 to 800 K. Mg2Si exhibits many promising characteristics, such as the abundance of its constituent elements in the earth’s crust and the non-toxicity of its processing by-products, resulting in freedom from concerns regarding prospective extended restrictions on hazardous substances. The efficiency of a thermoelectric device is characterized by the dimensionless figure of merit, ZT. It is well known that several kinds of dopants are effective in improving the thermoelectric performance of n-type Mg2Si. With Bi-doped n-type Mg2Si, we have achieved a maximum value of the dimensionless figure-of-merit ZT of ˜1.0 at ˜ 850 K. However, the correlation between the ZT values and the power generation characteristics, which is essential to understand in order to design a structure for a TE power generation module, has not been sufficiently investigated. In order to design a structure for a thermoelectric module using Mg2Si, we examined the correlation between the ZT values and the power-output of a single element using Mg2Si (ZT = 0.6) and Mg2Si doped with donor impurities such as Al and/or Bi (ZT = 0.65˜0.77). The measured single element was 2×2 mm2 in section and 10 mm long. Additionally, we developed and evaluated a new architecture based on a ‘unileg’ structure Mg2Si TE power generation module, which can improve the module lifetime and simplify its manufacture. As a starting material for the fabrication of the single element and the TE modules, pre-synthesized polycrystalline Mg2Si, fabricated by UNION MATERIAL was used. The material was sintered using a plasma-activated sintering (PAS) technique, and, at the same time, Ni electrodes were formed on the Mg2Si by employing of a monobloc PAS technique. The thermoelectric power-outputs were measured under a temperature difference, ΔT, ranging from 100-to-500 K by using UNION MATERIAL UMTE-1000M. The observed power-output for single element of Mg2Si (ZT = 0.6), 2 at % Bi-doped Mg2Si (ZT = 0.65) and 1at % Bi + 1at % Al-doped Mg2Si (ZT = 0.77) were 23.2 mW, 13.6 mW and 19.4 mW respectively at ΔT = 500 K (between 873 K and 373 K). For the new architecture based on the unileg structure thermoelectric module, the observed value for power-output-per-unit-area was 12 mW/mm2 at ΔT = 500 K.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3