Electronic Properties of Polymer-Fullerene Solar Cells

Author:

Dyakonov V.,Riedel I.,Deibel C.,Parisi J.,Brabec C. J.,Sariciftci N. S.,Hummelen J.C.

Abstract

ABSTRACTWe studied the electronic transport properties of conjugated polymer/fullerene based solar cells by means of temperature and illumination intensity dependent current-voltage characteristics, admittance spectroscopy and light-induced electron spin resonance. The short-circuit current density increases with temperature at all light illumination intensities applied, i.e., from 100 mW/cm2to 0.1 mW/cm2(white light), whereas a temperature independent behavior was expected. An increase of the open-circuit voltage from 850 mV to 940 mV was observed, when cooling down the device from room temperature to 100 K. The fill factor depends strongly on temperature with a positive temperature coefficient in the whole temperature range. In contrast, the light intensity dependence of the fill factor shows a maximum of 52% at intermediate illumination intensities (3 mW/cm2) and decreases subsequently, when increasing the intensity up to 100 mW/cm2. Further studies by admittance spectroscopy revealed two frequency dependent contributions to the device capacitance. One, as we believe, originates from trapping states located at the interface between composite and metal electrode with an activation energy of EA=180 meV, and the other one is from very shallow bulk states with EA=10 meV. The origin of the latter is possibly the thermally activated conductivity. The photo-generation of charge carriers and their fate in these blends have been studied by light-induced electron spin resonance. We can clearly distinguish between photo-generated electrons and holes in the composites due to different spectroscopic splitting factors (g-factors). Additional information on the environmental axial symmetry of the holes located on the polymer chains as well as on a lower, rhombic, symmetry of the electrons located on the methanofullerene molecules has been obtained. The origin of the signals and parameters of the g-tensor have been confirmed from studies on a hole doped polymer.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3