Excavation Damage Zone in the Experimental Deposition Holes at Äspö and Comparison to Existing Data

Author:

Autio Jorma,Malmlund Hanna,Hjerpe Thomas,Kelokaski Maarit,Siitari-Kauppi Marja

Abstract

ABSTRACTDisposal in deep, stable bedrock is currently one concept for isolating high-level wastes from the environment. Repository for high-level waste in rock excavated using different drilling techniques is surrounded by an excavation damaged zone (EDZ) which properties have been changed. The micro fracturing of samples taken from the experimental deposition holes in the underground Hard Rock Laboratory at Äspö were investigated by the 14C polymethylmetha-crylate (14C-PMMA) method and scanning electron microscopy (SEM) to evaluate the impact of EDZ on migration. The porosity of the damaged rock zone is clearly higher than the porosity of undisturbed rock. The thickness of the crushed zone with significantly higher porosity is a few millimetres and the average depth of the damaged zone (i.e. a clear increase in porosity found) is from 5 to 20 mm from the hole wall. The apertures of the inter- and intragranular fractures in the crushed zone varied from 5 to 30 μm according to SEM examination. Earlier results of porosity, diffusivity and permeability measurements in granites were compiled and the results of the porosity values of Äspö diorite were compared to the porosity values measured in other types of granites. The results were compiled in permeability-diffusivity-porosity space and were found to form a plane that could be used to estimate the range of diffusivity and permeability of the Äspö diorite.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3