Author:
Ridgway M.C.,Elliman R.G.,Petravic M.,Thornton R.P.,Williams J.S.
Abstract
The influence of implanted impurities (B, O, P, Ar, Xe, Pb, and Bi) on the rate of low-temperature (138 °C), solid-phase epitaxial growth (SPEG) of amorphized CoSi2 has been studied. SPEG rates of impurity-implanted CoSi2, as determined from time-resolved reflectivity measurements, were retarded for all impurities compared to that of Si-implanted CoSi2. The extent of retardation varied from a factor of 1.5 for P to 9.4 for Xe. Channeling measurements of impurity-implanted CoSi2 indicated that Xe and Bi atoms were located on nonsubstitutional lattice sites while ∼40% of Pb atoms occupied either substitutional sites or vacant interstitial cation sites following annealing. The presence of impurities did not affect the CoSi2 post-anneal crystalline quality, and no significant impurity diffusion was apparent at 138 °C from secondary-ion mass spectrometry measurements.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献