Self-Assembled Patterning of Ultrathin Silicides by Local Oxidation

Author:

Mantl S.,Zhao Q.T.,Kabius B.

Abstract

Most microfabrication techniques employ masks to transfer the desired microstructure onto a wafer using ultraviolet light, x-rays, electrons, or ions for the projection of the structures. Generally, photoresist processing and etching follow to form the final structures. In all cases, the facilities necessary to perform these processes grow increasingly more complex as the feature size of the structures diminishes, and these processes face their practical or economic limits at dimensions of about 50 nm. Thus alternative approaches are under investigation, including different self-assembly techniques. They require no costly facilities and no masks with nanometer structures, and they promise high throughput, since the patterning is directly achieved by a physical or chemical process. Self-assembled monolayers of long-chain organic molecules are the most widely studied examples, where chemisorption and spontaneous self-ordering of the molecules are observed on appropriate substrates. Another interesting example is island-ordering, laterally or in a vertical direction, during epitaxial growth. The lattice-mismatched islands tend to nucleate preferentially on top of each other when separated by a thin spacer layer, due to the associated strain field. Another approach is the use of specific stressor layers on the surface to obtain alignment of buried precipitates along the stressor lines. However, the main challenges of all self-assembly techniques are precise control of the dimensions of the structures and reproducibility.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chapter 7 Novel Aberration Correction Concepts;Advances in Imaging and Electron Physics;2008

2. Nanometer patterning of epitaxial CoSi2 on silicon-on-insulator substrates;Microelectronic Engineering;2002-01

3. Interfacial silicon oxide formation during synthesis of ZrO2 on Si(100);Applied Surface Science;2000-07

4. Properties of ion implanted epitaxial CoSi2/Si(1 0 0) after rapid thermal oxidation;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2000-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3