Low temperature sputter deposition of Ba0.96Ca0.04Ti0.84Zr0.16O3 thin films on Ni electrodes

Author:

Cramer N.,Philofsky Elliot,Kammerdiner Lee,Kalkur T. S.

Abstract

ABSTRACTThe integration of high-K materials, such as ferroelectrics in the paraelectric state, in integrated circuits presents several challenges. If high-K materials are deposited on-chip after or between Al metalization steps, then these challenges include limits on processing gas composition, deposition temperature and electrode material. Specifically, the atmosphere present during deposition and annealing must be oxygen-free; the deposition and annealing temperatures must not exceed 450°C; and the electrode material must be etchable with chemical techniques. We studied rf magnetron sputtered Ba0.96Ca0.04Ti0.84Zr0.16O3 (BCTZ) with Ni electrodes because this system meets all the above requirements. The BCTZ deposition process uses pure Ar as the sputter gas and a substrate temperature of 450°C. Subsequent anneals may be performed in a reducing (forming gas) atmosphere with little effect on either the dielectric constant or leakage current. The Ni electrodes provide a good substrate for BCTZ films and are much easier to integrate than Pt films. Observed values for the relative dielectric constant K, exceeding 100, were not as high as for BCTZ films on Pt electrodes, however these values are sufficient to provide a clear advantage over other, non-ferroelectric materials. Overall, the device characteristics observed prove that the Ni/BCTZ/Ni capacitor is a valuable technology for on-chip capacitor applications.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3