Cold Spray Direct Fabrication – High Rate, Solid State, Material Consolidation

Author:

Smith M. F.,Brockmann J. E.,Dykhuizen R. C.,Gilmore D. L.,Neiser R. A.,Roemer T. J.

Abstract

AbstractDirect fabrication of metal near-net shapes from a computer model typically involves melting and solidification, which can cause high residual stresses, undesirable phases, poor microstructures, rough surface finishes, warpage, and other problems. This paper describes a new technology, still under development, that might be used to directly fabricate solid, near-fulldensity, free-form shapes of many metals, and even some composite materials, at or near room temperature without melting and solidification. In this process, tentatively called Cold Spray Direct Fabrication (CSDF), powder particles in a supersonic jet of compressed gas impact a solid surface with sufficient energy to cause plastic deformation and consolidation with the underlying material by a process thought to be analogous to explosive welding. Material deposition by cold spray methods has already been successfully demonstrated by several investigators. This paper presents results of an experimental study to investigate the effects of selected process variables on cold spray particle velocities. In addition, a key technical barrier to the CSDF concept is focusing the spray stream down to dimensions that would permit a useful level of part detail, while still providing practical build rates. This paper presents results of initial research to develop an aerodynamic lens that may provide the required particle stream focusing.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference20 articles.

1. Use of gas-dynamic spraying to fin tubes of heat exchangers

2. 7. Papyrin A. N. , The Pennsylvania State University, personal communication.

3. The laser forming of metallic components using particulate materials

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3