Influence of Particle Velocities on Adhesion Strength of Cold Spray Inner Diameter Coatings

Author:

Meeß Joachim,Anasenzl Manuel,Ossenbrink Ralf,Michailov Vesselin

Abstract

AbstractDue to the recent developments of hardware components and the hereby resulting ability to increase process parameters, the application area of the cold gas spray technology is expanding quickly. The present research focuses on the influence of working gas pressure and working gas temperature on the adhesive strength of inner diameter coatings, which were produced with two different alloy steel powder variants. Gas pressure and gas temperature were varied in four different parameter sets. At first, the powder variants were examined for morphology and particle size distribution. Secondly, the influence of four different process parameters on the achievable particle velocity was measured. In addition, the arithmetical mean height (Sa) of the coating was measured in order to determine the effect of the four parameter sets on the achievable surface roughness. Furthermore, the impact of the process parameters on the steel particles’ penetration depth into the aluminum substrate was examined. Finally, adhesion strength measurements of the inner diameter coatings were carried out. The results reveal that with rising process parameters, the particle velocity increases, and the achievable surface roughness is lowered. It was also shown that the penetration depth of the particles into the substrate increases with increasing particle velocity. In addition, this study demonstrated a dependence of the process parameters on the adhesion strength for inner diameter coatings.

Funder

Brandenburgische TU Cottbus-Senftenberg

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3