Nanoindentation and Nanoscratching of Hard Carbon Coatings for Magnetic Disks

Author:

Tsui T. Y.,Pharr G. M.,Oliver W. C.,Bhatia C. S.,White R. L.,Anders S.,Anders A.,Brown I. G.

Abstract

ABSTRACTNanoindentation and nanoscratching experiments have been performed to assess the mechanical properties of several carbon thin films with potential application as wear resistant coatings for magnetic disks. These include three hydrogenated-carbon films prepared by sputter deposition in a H2/Ar gas mixture (hydrogen contents of 20, 34, and 40 atomic %) and a pure carbon film prepared by cathodic-arc plasma techniques. Each film was deposited on a silicon substrate to thickness of about 300 nm. The hardness and elastic modulus were measured using nanoindentation methods, and ultra-low load scratch tests were used to assess the scratch resistance of the films and measure friction coefficients. The results show that the hardness, elastic modulus, and scratch resistance of the 20% and 34% hydrogenated films are significantly greater than the 40% film, thereby showing that there is a limit to the amount of hydrogen producing beneficial effects. The cathodic-arc film, with a hardness of greater than 59 GPa, is considerably harder than any of the hydrogenated films and has a superior scratch resistance.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference11 articles.

1. The mechanical behavior of silicon during small-scale indentation

2. 5. Pharr G.M. , Callahan D.L. , McAdams S.D. , Tsui T.Y. , Anders S. , Anders A. , Ager J.W. III, Brown I.G. , Bhatia C.S. , Silva S.R.P. , and Robinson J. , submitted, Applied Phys. Lett.

3. Effect of vacuum arc deposition parameters on the properties of amorphous carbon thin films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3