Statistically distributed nano-scratch testing of AlFeMnNb, AlFeMnNi, and TiN/Si3N4 thin films on silicon

Author:

Beake Ben D.1ORCID,Vishnyakov Vladimir M.2ORCID,Goodes Stephen R.1ORCID,Rahmati Azadeh Taher3ORCID

Affiliation:

1. Micro Materials Ltd 1 , Willow House, Yale Business Village, Ellice Way, Wrexham LL13 7YL, United Kingdom

2. Institute for Materials Research, University of Huddersfield 2 , Queensgate HD1 3DH, United Kingdom

3. John Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University 3 , Chester Street, Manchester M15 6BH, United Kingdom

Abstract

For studying the damage tolerance of thin films, a novel randomly distributed nano-scratch test method was introduced and demonstrated as a promising characterization method. It is capable of more closely simulating the damage progression in abrasion, where material removal can be influenced by the interaction between damage produced by previous scratches in close proximity. In addition to studying how localized failure events affect subsequent damage progression, it is possible to monitor the evolution of the film degradation cycle-by-cycle using the mean depth and friction over the scratch. Randomly distributed nano-scratch tests were performed on the high entropy alloy AlFeMnNb, AlFeMnNi, and nanocomposite (nc-) TiN/Si3N4 thin films on silicon. Brittle fracture and film removal with extensive chipping of the Si substrate were observed over the entire scratched region on AlFeMnNi and nc-TiN/Si3N4 in distributed scratch tests at applied loads that were only ∼0.2–0.3 of the load needed to produce the chipping in ramped load nano-scratch tests due to film and substrate fatigue. In contrast, the softer AlFeMnNb deformed predominantly by ductile ploughing with significantly improved damage tolerance and crack resistance in the distributed scratch tests. The new method can be used to evaluate the performance of thin films in applications where they can be exposed to abrasive/sliding wear. It can provide a more direct measure of abrasion resistance than assuming high resistance to abrasive wear from coating hardness. In the thin film systems studied, higher hardness was associated with greater fracture and delamination in the distributed scratch tests.

Funder

Innovate UK

Publisher

American Vacuum Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3