Formation and Luminescent Properties of Oxidized Porous Silicon Doped with Erbium by Electrochemical Procedure

Author:

Bondarenko V.,Vorozov N.,Dolgyi L.,Yakovtseva V.,Petrovich V.,Volchek S.,Kazuchits N.,Grom G.,Lopez H. A.,Tsybeskov L.,Fauchet P. M.

Abstract

AbstractThe present work is concerned with Er-doped oxidized porous silicon (PS). The characteristic feature of the work is that PS doping has been realized by an electrochemical procedure followed by a high temperature treatment. 5-μm thick PS layers were formed on p-type Si of 0.3-Ohm-cm resistivity. Er incorporation was performed by a cathodic polarization of PS in a 0.1 M Er(NO3)3 aqueous solution. A high temperature treatment in an oxidizing ambient at 500-1000°C was utilized to provide either partial or total oxidation of PS:Er layers. X-ray microanalysis was used to study chemical composition of the samples. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra were investigated. After the partial oxidation (in the temperature range of 600-800°C), weak Er3+-related PL at 1.53 ptm was observed. A high temperature anneal in Ar atmosphere at the temperature of 1100°C caused a significant increase in the Er3+-related PL intensity. Resonant features were observed in PLE spectra of fully oxidized PS. Five peaks at 381, 492, 523, 654 and 980 nm were revealed. The strongest excitation occurred at 381 and 523 nm. The excitation of different Er3+ energy levels, cross-relaxation interactions and emission due to the 4I13/24I15/2 transitions were considered. Application of the Er-doped oxidized PS for integrated optical waveguides is presented.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photoluminescence from erbium incorporated in oxidized porous silicon;Optical Materials;2005-02

2. Oxidized Porous Silicon Based SOI: Untapped Resources;Progress in SOI Structures and Devices Operating at Extreme Conditions;2002

3. Er-doped oxidised porous silicon waveguides;Thin Solid Films;2001-09

4. Progress towards achieving integrated circuit functionality using porous silicon optoelectronic components;Materials Science and Engineering: B;2000-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3