Atomic Control of the Electronic Structure at Complex Oxide Heterointerfaces

Author:

Hwang Harold Y.

Abstract

AbstractThe following article is based on the Outstanding Young Investigator Award presentation given by Harold Y. Hwang of the University of Tokyo on March 29, 2005, at the Materials Research Society Spring Meeting in San Francisco. Hwang was cited for “innovative work on the physics of transition-metal oxides and the atomic-scale synthesis of complex oxide heterostructures.” Perovskite oxides range from insulators to superconductors and can incorporate magnetism as well as couple to phonon instabilities. The close lattice match between many perovskites raises the possibility of growing epitaxial thin-film heterostructures with different ground states that may compete or interact. The recent development of superconducting Josephson junctions, magnetic tunnel junctions, ferroelectric memory cells, and resistive switching can be considered examples within this new heteroepitaxial family. In this context, Hwang presents his studies of electronic structure at atomically abrupt interfaces grown by pulsed laser deposition. Some issues are generic to all heterointerfaces, such as the stability of dopant profiles and diffusion, interface states and depletion, and interface charge arising from polarity discontinuities. A more unusual issue is the charge structure associated with Mott insulator/band insulator interfaces. The question is, how should one consider the correlated equivalent of band bending? This semiconductor concept is based on the validity of rigid single-particle band diagrams, which are known to be an inadequate description for strongly correlated electrons. In addition to presenting an interesting scientific challenge, this question underlies the attempts to develop new applications of doped Mott insulators in device geometries.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3