Author:
Jiang Litong,Jin Kuijuan,Ren Wenning,Yang Guozhen
Abstract
The first-principles calculations were used to explore the tunable electronic structure in DyNiO3 (DNO) under the effects of the biaxial compressive and tensile strains. We explored how the biaxial strain tunes theorbital hybridization and influences the charge and orbital ordering states. We found that breathing mode and Jahn–Teller distortion play a primary role in charge ordering state and orbital ordering state, respectively. Additionally, the calculated results revealed that the biaxial strain has the ability to manipulate the phase competition between the two states. A phase transition point has been found under tensile train. If the biaxial train is larger than the point, the system favors orbital ordering state. If the strain is smaller than the point, the system is in charge ordering state favorably.
Subject
General Physics and Astronomy