Mirror Electron Microscope-Low Energy Electron Diffraction for Studies of Surface Ordering and Melting

Author:

Unertl W. N.,Shern C. S.

Abstract

ABSTRACTMirror Electron Microscopy – Low Energy Electron Diffraction (MEMLEED) combines a LEED with MEM in a single simple instrument for studies of surface processes such as phase transitions and premelting under ultra-high vacuum (uhv) conditions. In MEMLEED, 5–20 keV primary electrons are decelerated by an electrostatic mirror-objective lens in which the sample is the mirror element. In the MEN mode, electrons are reflected just above the surface, reaccelerated through the objective lens and imaged. Contrast is due to variations in both surface potential and topography. Current uhv instruments have lateral resolution of about 1 μm. In the LEED mode, 0-100 eV electrons strike the sample at near normal incidence. Diffracted electrons are accelerated through the objective lens. Beam spacings in the imaged diffraction pattern are proportional to k11 and beams do not move as the incident energy is varied. MEMLEED has intrinsically higher transfer width and is less sensitive to magnetic fields near the sample than conventional LEED. Design considerations for uhv instruments are discussed. Applications to the study of order-disorder transitions, premelting phenomena, and to measurements of changes in surface potential are described.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3