Polysilicon Grain Growth by Rapid Isothermal Annealing

Author:

Pinizzotto R. F.,Clark F. Y.,Malhi S. D. S.,Shah R. R.

Abstract

ABSTRACTone method of reducing the area occupied by a RAM cell is to stack the p- and n-channel devices on top of one another. This “stacked CMOS” structure is a first step towards three dimensional integration. The simplest approach is to use polysilicon as the substrate for the top transistors. This paper describes the results of grain growth studies of samples annealed by rapid isothermal annealing. The temperature varied from 1100 to 1400°C and the anneal time varied from 10 to 480 seconds. TEM was used to examine the microstructure of the material. The grain growth was found to be film thickness limited, i.e. the final grain size was approximately the same as the initial film thickness. As a result, the kinetics of grain growth cannot be described by a simple logarithmic time law. There also is a velocity dependent drag contribution to the growth kinetics that implies impurities play an important role. The interlevel oxide thickness affects grain growth. Thicker oxides lead to faster growth, probably by reducing the heat flow to the silicon substrate. A capping layer was found to have no effect on the grain size. The above results indicate that it is possible to obtain large grains in short times using isothermal annealing. This process may be useful for fabricating stacked polysilicon layers in three-dimensional integrated circuits.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3