The Fracture Toughness of Polysilicon Microdevices

Author:

Ballarini R.,Mullen R.L.,Kahn H.,Heuer A.H.

Abstract

AbstractThe development of polysilicon fracture mechanics specimens with characteristic dimensions comparable to those of typical microelectromechanical systems (MEMS) devices is presented. The notched cantilever specimens are fully integrated with a simultaneously microfabricated electrostatic actuator, which allows on-chip testing of the specimens without the need of an external loading device, and without any possible influences from external sources. Under monotonic loading, the average maximum tensile stress (strength) and average nominal fracture toughness were measured as 4.2 GPa and 3.5 MPa-m½ for boron-doped specimens, and 5.0 GPa and 4.0 MPa-m½ for undoped specimens. An average modulus of rupture of 3.3 GPa and average nominal toughness of 2.7 MPa-m½ were measured for specimens cracked under cyclic resonance loading. The differences between the monotonic loading and cyclic loading data are attributed to fatigue initiation of a sharp crack from the 1 ýtm radius notch. The experimental data is consistent with a critical flaw size in the fabricated devices, a, that is related to the fracture toughness Klc by Klc/a1/2=4600 MPa.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical Characterization at the Microscale;Mechanics of Microsystems;2018-02-12

2. Properties of Materials Under High Electric Field;Materials Under Extreme Conditions;2017

3. Fatigue of LIGA Ni Micro-Electro-Mechanical System Thin Films;Metallurgical and Materials Transactions A;2007-08-10

4. Mechanisms of fatigue in LIGA Ni MEMS thin films;Materials Science and Engineering: A;2007-01

5. Material Properties: Measurement and Data;MEMS: A Practical Guide to Design, Analysis, and Applications;2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3