Bacterial Macrofibers and Bionites: Materials of Natural and Synthetic Design

Author:

Mendelson Neil H.

Abstract

ABSTRACTTwo fiber forms can be obtained from cells of the rod-shaped bacterium,Bacillus subtilis, one called macrofibers, the other bacterial thread. Macrofibers are highly organized, multicellular structures, millimeters in length that selfassemble in a unique way. Each fiber is essentially a single chain of cells linked end-to-end that has repeatedly folded upon itself and twisted into helical form. The growth of individual cells yields both the material of the macrofiber and the forces required for its assembly. The forces involved stem from twisting motions caused by cell growth geometry. The folding process is akin to negative supercoiling. New approaches have been used to estimate the magnitude of forces. Torque generated by single filaments has been estimated from snapopening motions resulting from aborted attempts at folding to be in the range of 10−10to10−8dyne-cm. In contrast, multifilament fibers carrying small wires in their loops must have generated a torque of at least 10−5dyne-cm and a supercoiling force of at least 10−5dyne in order to have moved the wires in viscous solutions at the rates observed. The second bacterial fiber form, bacterial thread, and its mineralized derivatives, called bionites, are man-made materials. They are produced by the drawing and drying of bacterial cell filaments from cultures grown in the form of a textile-like web. The material properties of bacterial thread reflect primarily those of the strength-bearing cell wall polymer, peptidoglycan. A variety of new fiber-like materials have been produced by mineralizing the cell walls in situ in web cultures and drawing the products. Iron, copper, calcium, and potassium phosphate-containing bionites have been obtained in this manner. We are currently searching for order in the bionite crystal forms that may reflect the electrostatic nature of the wall polymer structural templates.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BIBLIOGRAPHY;Atlas of Fibre Fracture and Damage to Textiles;1998

2. Mechanics of bacterial macrofiber initiation;Journal of Bacteriology;1995-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3