Mechanical properties of Bacillus subtilis cell walls: effects of removing residual culture medium

Author:

Thwaites J J1,Surana U C1

Affiliation:

1. Department of Engineering, University of Cambridge, England.

Abstract

Experiments are described in which the tensile strength, the initial (Youngs') modulus, and other mechanical properties of the bacterial cell wall were obtained as functions of relative humidity (RH) in the range of 20 to 95%. These properties were deduced from tensile tests on bacterial thread, a fiber consisting of many highly aligned cells of Bacillus subtilis, from which residual culture medium had been removed by immersion in water. Reasons are given to support the idea that the mechanical properties of bacterial thread relate directly to those of the cylinder wall and that they are not influenced by septa, cytoplasm, or the thread assembly. The data show that the cell wall, like many other heteropolymers, is visco-elastic. When dry, it behaves like a glassy polymer with a tensile strength of about 300 MPa and a modulus of about 13 GPa. When wet, its behavior is more like a rubbery polymer with a tensile strength of about 13 MPa and a modulus of about 30 MPa. Thus, the cell wall is stronger than previously reported. Walls of this strength would be able to bear a turgor pressure of 2.6 MPa (about 26 atm). The dynamic behavior suggests a wide range of relaxation times. The way in which mechanical behavior depends strongly on humidity is discussed in terms of possible hydrogen bond density and the ordering of water molecules. Cell walls in threads containing residual culture medium TB are, except at low RH, 10 times more flexible and about 4 times less strong. All of their mechanical properties appear to vary with change in RH in a manner similar to those of walls from which the culture medium has been washed, but with a downshift of about 18% RH.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference23 articles.

1. Changes in buoyant density and cell size of Escherichia coli in response to osmotic shocks;Baldwin W. W.;J. Bacteriol.,1988

2. Gotte L. M. Mammi and G. Pezzin. 1968. Some structural aspects of elastin revealed by X-ray diffraction and other physical methods p. 236-245. In W. G. Crewther (ed.) Symposium of fibrous proteins. Butterworths London.

3. The flexibility of bacterial cell walls;Issac L.;J. Appl. Bacteriol.,1974

4. The glass point of elastin;Kakivaya S. R.;Proc. Natl. Acad. Sci. USA,1975

5. The cytology of an avian strain of Mycobacterium tuberculosis studied with the electron and light microscopes;Knaysi G.;J. Bacteriol.,1950

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3