Effect of Stresses on Defect Nucleation in Si1−.xGex/Si Heteroepitaxial Systems

Author:

Ozkan Cengiz S.,Nix William D.,Gao Huajian

Abstract

AbstractStrained layer semiconductor structures provide possibilites for novel electronic devices. When a semiconductor layer is deposited epitaxially onto a single crystal substrate with the same structure but a slightly different lattice parameter, the semiconductor layer grows pseudomorphically with a misfit strain that can be accomodated elastically below a critical thickness. When the critical thickness is exceeded, the elastic strain energy builds up to a point where it becomes energetically favorable to form misfit dislocations. In the absence of a capping layer, surface roughening may also take place which causes strain relaxation in the form of 2D ridges or islands via surface diffusion. At sharp valley regions on the surface, amplified local stresses can cause further defect nucleation and propagation. These defects can be detrimental to the electrical performance of devices by acting as electron-hole recombination centers or current leakage channels. In this paper, we present observations and analyses of two novel defects nucleated in heteroepitaxial Si1−xGex thin films through surface roughening. Heteroepitaxial films 500 Å thick and containing 22% Ge are deposited by LPCVD. These initially flat films are subjected to various annealing conditions in a H2 atmosphere to induce morphological evolution and defect formation. High resolution transmission electron microscopy and atomic force microscopy have been used to study the morphology of defects at the film surface and at the film/substrate interface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3