Interstitial Defect Reactions In Silicon

Author:

Zhao S.,Agarwal A. M.,Benton J. L.,Gilmer G. H.,Kimerling L. C.

Abstract

AbstractThe interaction between self-interstitials (Sii), impurities, and dopants in Si leads the formation of undesirable point defects which affect device operation. Electron beam irradiation has been used to generate Sii and initiate defect reactions, and the hierarchy and competition of interstitial defect reactions involving O, C, B, and P in Si have been explored by DLTS measurements. We describe the interstitial defect reactions as a three-step process: (i) displacement reaction for the generation of Sii, (ii) Watkins replacement reaction for the generation of C and B interstitials (Ci and Bi), and (iii) diffusion limited reaction for the formation of pairs. Within the framework of reaction kinetics, for the first time, we have successfully set up a nonlinear system model to simulate the reaction processes. The interstitial migration enthalpy and the pair formation capture radius are two parameters used in the model to describe long range migration and near neighbor interaction. The good agreement between the model and experiments not only supports the defect assignments by DLTS, but also provides an initial glimpse into the interaction of point defects in Si.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study of Commonly Observed Degradation Methods in Photovoltaic Modules;2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA);2021-10-08

2. Annealing kinetics of boron-containing centers in electron-irradiated silicon;Semiconductors;2013-02

3. Formation and origin of the dominating electron trap in irradiatedp-type silicon;Physical Review B;2008-08-08

4. Boron–oxygen complexes in Si;Physica B: Condensed Matter;2006-04

5. Hydrogenation of the dominant interstitial defect in irradiated boron-doped silicon;Physical Review B;2004-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3