Nanoporous Silica For Low K Dielectrics

Author:

Ramos T.,Rhoderick K.,Roth R.,Brungardt L.,Wallace S.,Drage J.,Dunne J.,Endisch D.,Katsanes R.,Viemes N.,Smith D. M.

Abstract

ABSTRACTAs integrated circuit sizes decrease below 0.25 microns, device performance will no longer improve at the same rate as for past generations because of RC interconnect delay which becomes significant as compared to the intrinsic gate delay. Parallel approaches to address this are to use a lower resistance metal (i.e., copper instead of aluminum) and to use a dielectric material with a dielectric constant significantly below that of dense silica (∼4). Recently, considerable progress has been made in development of thin films of nanoporous silica for these applications. Advantages include high thermal stability, small pore size, similarity to conventional spin-on deposition processes and spin-on glass precursors and final material (silica). The dielectric constant of nanoporous silica can be tailored between ∼1 and 3 which allows its’ implementation at multiple technology nodes in integrated circuit manufacture.Recent development efforts have been focused on; 1) simpler and more reproducible deposition processes, 2) a more complete understanding of processing-property relationships for this material, 3) scale-up of manufacturing to yield a range of precursor products with stability for at least six months and very high purity, and 4) working with customers to integrate this material into both aluminum/gapfill and copper/damascene process flows. This paper targets several specific issues related to nanoporous silica use including water adsorption, pore size distribution control, processing at commercially viable throughputs, and obtaining thickness and dielectric uniformity across 200 mm wafers and wafer to wafer.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interlevel Dielectrics;Handbook of Semiconductor Interconnection Technology, Second Edition;2006-02-22

2. An Ultralow Dielectric Constant Porous Silica Film with Cu Directly Grown by a Displacement Process;Journal of The Electrochemical Society;2006

3. A theoretical model on pore size distribution in low dielectric constant nanoporous silica films;Thin Solid Films;2005-02

4. Next-Generation Microvia and Global Wiring Technologies for SOP;IEEE Transactions on Advanced Packaging;2004-05

5. Low dielectric constant porous diamond films formed by diamond nanoparticles;Applied Physics Letters;2003-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3