Transient current in a-Si:H-based MIS photosensors

Author:

Fernandes Miguel,Vygranenko Yuriy,Vieira Manuela,Heiler Gregory,Tredwell Timothy,Nathan Arokia

Abstract

ABSTRACTLarge-area amorphous silicon (a-Si:H) sensor arrays are widely used for medical x-ray imaging, nondestructive testing and security screening. Most of the commercially available detectors are of the indirect conversion type, in which an x-ray phosphor screen is optically coupled to an array of a-Si:H sensors. The a-Si:H PIN photodiode and the MIS photoelectric converter are two alternative sensing elements used in these detectors. The major advantage of the MIS structure over PIN is fact that this device has the same layer sequence as the a Si:H TFT switch and therefore, they can be fabricated simultaneously resulting in an effective reduction in the lithography mask count. The main disadvantage of the MIS structure is the higher noise level due to transient dark current. The transient dark current originates from traps at the semiconductor-insulator interface and i-layer bulk defects. In this work we analyze the transient current transport in segmented-gate/SiN/a Si:H/n+/ITO structures under different biasing conditions and temperatures. Using a home-made setup the dark current decay was measured within an interval of 1 second in the temperature range from 294 to 353K. It is found that the dark current component associated with charge trapping at the insulator-semiconductor interface can be largely eliminated by adjusting the bias voltage during the refresh period. Under optimized biasing conditions and elevated temperatures the bulk current component becomes dominant.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3