AlGaN Transition Layers on Si (111) Substrates - Observations of Microstructure and Impact on Material Quality

Author:

Roberts John C.,Cook James W.,Rajagopal Pradeep,Piner Edwin L.,Linthicum Kevin J.

Abstract

ABSTRACTIII-nitride materials have different crystal structures and properties than the substrates commonly used for their deposition, including silicon, silicon carbide and sapphire. These differences, such as thermal expansion coefficient and lattice constant, necessitate the use of a transition layer to accommodate the resulting stress between substrate and the epitaxially grown III-N layers. AlxGa1−xN based transition layers are one proven solution used for the growth of device quality GaN layers on Si (111) substrates. The use of such transition layers enables the deposition of state of the art AlGaN/GaN high electron mobility transistor epitaxial structures that, upon fabrication into devices, exhibit high performance and excellent reliability.Examination of the microstructure of these AlxGa1−xN transition layers, by transmission electron microscopy (TEM) and other methods, reveals some interesting properties that can help explain how high quality III-N epitaxy can be performed in a system with significant thermal and lattice mismatch. Observations that will be reported on and discussed in this presentation are (1) the role that a thin strain absorbing amorphous SiNx layer at the Si substrate/transition layer interface plays in the reduction of the formation of misfit dislocations, (2) the low screw dislocation density (less than ȼ107/cm2) in these III-N films relative to edge and mixed dislocation densities, and (3) the role that the substrate type and quality can play on dislocation type and density.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3