Author:
Udayakumar K. R.,Chen J.,Brooks K. G.,Cross L. E.,Flynn A. M.,Ehrlich D. J.
Abstract
AbstractThin films of lead zirconate titanate have been fabricated for application to a new family of flexure-wave piezoelectric micromotors that are characterized by low speed and high torque. The high relative dielectric constant and breakdown strength of the films lead to high stored energy densities. Evaluation of the film as a bimorph yielded a value of -88 pC/N for the transverse piezoelectric strain coefficient, d31; the relevant electromechanical coupling factor, k31, calculated thereupon was 0.22. The development of the piezoelectric ultrasonic micromotors from the PZT thin films, and the architecture of the stator structure are described. Nonoptimized prototype micromotors show rotational velocities of 100-300 rpm at drives of 3-5 V.
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献