Laser Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon

Author:

Bilenchi Renzo,Gianinoni Iva,Musci Mirella,Murri Roberto

Abstract

ABSTRACTSome results on hydrogenated amorphous silicon growth by CO2 laser photodissociation of silane are reported. A 100 W CW CO2 laser was used as the excitation source. A horizontal configuration was adopted, where the laser beam is sent parallel to the substrate surface inside a flux reactor, and its energy is used to excite and dissociate the silane molecules flowing near the solid surface. The laser has no direct heating effect on the substrate, which is independently heated by an oven.The photoproduced radicals by interacting with the surface grow a film at a rate strongly depending on silane pressure, substrate temperature and laser intensity. This experimental configuration allows depositions on large areas, owing to the large number of reactant molecules involved in the photochemical process. Moreover, material can be produced with a continuously variable hydrogen content, since the substrate temperature required for obtaining depositions can be as low as room temperature and adjusted independently of the other process parameters.The film properties are similar to those of the glow discharge deposited material. The film amorphousness and the hydrogen presence either in monohydride and dihydride groups are evidenced by x-ray patterns and ir spectra. Results on the electrical and optical properties are also reported.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3