Author:
Claflin B.,Binger M.,Lucovsky G.,Yang H.-Y.
Abstract
ABSTRACTThe growth of reactively sputtered TiNx and WNx compound metal films on ultra-thin, remote plasma enhanced chemical vapor deposited SiO2 and SiO2/Si3N4 (ON) stack dielectrics is investigated from initial interface formation to bulk film by interrupted growth and on-line Auger electron spectroscopy (AES). Growth of both metals occurs uniformly without a seed layer on both dielectrics. The chemical stability of these metal/dielectric interfaces is studied by sequential on-line rapid thermal annealing treatments up to 850 °C and AES. TiNx reacts with SiO2 above 850 °C but the addition of a Si3N4 dielectric top-layer makes the TiNx/ON interface chemically stable at 850 °C. WNx/SiO2 and WNx/Si3N4 interfaces are both stable below 650 °C. MOS capacitors using TiNx or WNx metal gates and thermal SiO2 gate dielectrics exhibit excellent capacitance-voltage characteristics. The work function for TiNx lies near midgap in Si while for WNx it lies closer to the valence band.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献