The influence of oxide and adsorbates on the nanomechanical response of silicon surfaces

Author:

Syed Asif S. A.,Wahl K. J.,Colton R. J.

Abstract

In this article we report the influence of surface oxides and relative humidity on the nanomechanical response of hydrophobic and hydrophilic Si surfaces. Depth-sensing nanoindentation combined with force modulation enabled measurement of surface forces, surface energy, and interaction stiffness prior to contact. Several regimes of contact were investigated: pre-contact, apparent contact, elastic contact, and elasto-plastic contact. Both humidity and surface preparation influenced the surface mechanical properties in the pre- and apparent-contact regimes. Meniscus formation was observed for both hydrophobic and hydrophilic surfaces at high humidity. Influence of humidity was much less pronounced on hydrophobic surfaces and was fully reversible. In the elastic and elasto-plastic regimes, the mechanical response was dependent on oxide layer thickness. Irreversibility at small loads (300 nN) was due to the deformation of the surface oxide. Above 1 μN, the deformation was elastic until the mean contact pressure reached 11 GPa, whereby Si underwent a pressure-induced phase transformation resulting in oxide layer pop-in and breakthrough. The critical load required for pop-in was dependent on oxide thickness and tip radius. For thicker oxide layers, substrate influence was reduced and plastic deformation occurred within the oxide film itself without pop-in. Elastic modulus and hardness of both the oxide layer and Si substrate were measured quantitatively for depths <5 nm.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3