Author:
Zhu W.,Tan O. K.,Deng J.,Oh J. T.
Abstract
Ferroelectric(Ba0.67Sr0.33)TixO3 (BST) thin films with x = 0.98, 1.00, 1.02, and 1.04 were prepared by the sol-gel technology, and their thermal, structural, dielectric, and gas sensing properties were systematically characterized. The amorphous (Ba0.67Sr0.33)TixO3 thin film capacitive devices were made on Si substrate to detect hydrogen gas and to study hydrogen-induced interfacial polarization potential.Experimental results showed that the Schottky I–V behavior appears in these Pd/amorphous BST thin film/metal capacitive devices and that enhanced interfacial dipole potentials as large as 4.5 V at 1000 ppm hydrogen gas in air were newly observed, which is about 7 times larger than the best value reported under similar testing conditions. It was clearly shown that the hydrogen-induced interfacial polarization potential is closely correlated with the microstructure of ferroelectric thin films and the enhancement of this interfacial polarization potential is mainly attributed to the high dielectric constant of amorphous ferroelectric thin films. A simple hydrogen interface-blocking model is also presented to explain this interesting phenomenon.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献