Photoluminescence from Coherently Strained Si1−xGex Alloys

Author:

Rowell N.L.,Noël J.-P.,Houghton D.C.,Perovic D.D.

Abstract

ABSTRACTAn intense, broad photoluminescence PL peak, with an internal quantum efficiency as high as 31%, has been observed from a variety of structures containing Si1−xGex strained layers on Si(100) substrates; i.e. Si1−xGex thick random alloy layers, single quantum wells (SQW) and multiple quantum wells (MQW) with layers thick enough so that zone folding effects were not relevant. This peak, which shifted consistently and predictably with Ge concentration( 0.06 < × < 0.53), had its high energy edge near the established band gap for strained SiGe. PL excitation spectroscopy indicated that no phonons were involved in the process causing the SiGe PL peak. Samples deposited at ~ 400 °C exhibited low PL intensity, whereas annealing at ~ 600 °C enhanced the intensity by as much as two orders of magnitude. This anneal treatment was found to remove grown-in defect complexes without creating a significant density of misfit dislocations. The PL peak energy at 4.2 K varied from 620 to 990 meV for Ge fractions x from 0.53 to 0.06. When the samples were forced to relax, e.g. by higher temperature annealing, the luminescence of this peak either shifted to near the relaxed bandgap or was quenched by deep, dislocation related states. Prior to such relaxation, the efficient PL was due to exciton accumulation in the strained Si1−xGex layers of single and multiple quantum wells, where the bandgap was locally reduced. It is suggested that the recombination of electrons and holes occuring within a high-density electron hole condensate (EHC) can cause the observed spectrum.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local excitons in Si/Ge inverted quantum huts (IQHs) embedded Si;Journal of Physics: Condensed Matter;2021-08-05

2. Strain relaxation kinetics in Si1−xGex/Si heterostructures;Journal of Applied Physics;1991-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3