Time Series Modeling on Monthly Data of Tourist Arrivals in Nepal: An Alternative Approach

Author:

Subedi Amrit

Abstract

Background: There are various approaches of modeling on time series data. Most of the studies conducted regarding time series data are based on annual trend whereas very few concerned with data having monthly fluctuation. The data of tourist arrivals is an example of time series data with monthly fluctuation which reveals that there is higher number of tourist arrivals in some months/seasons whereas others have less number. Starting from January, it makes a complete cycle in every 12 months with 3 bends indicating that it can be captured by biquadratic function.Objective: To provide an alternative approach of modeling i.e. combination of Autoregressive model with polynomial (biquadratic) function on time series data with monthly/seasonal fluctuation and compare its adequacy with widely used cyclic autoregressive model i.e. AR (12).Materials and Methods: This study is based on monthly data of tourist arrivals in Nepal. Firstly, usual time series model AR (12) has been adopted and an alternative approach of modeling has been attempted combining AR and biquadratic function. The first part of the model i.e. AR represents annual trend whereas biquadratic part does for monthly fluctuation.Results: The fitted cyclic autoregressive model on monthly data of tourist arrivals is Est. Ym = 3614.33 + 0.9509Ym-12, (R2=0.80); Est. Ym indicates predicted tourist arrivals for mth month and Ym-12 indicates observed tourist arrivals in (m-12)th month and the combined model of AR and biquadratic function is Est. Yt(m) = -46464.6 + 1.000Yt-1 + 52911.56m - 17177m2 + 2043.95m3 - 79.43m4, (R2=0.78); Est. Yt(m) indicates predicted tourist arrivals for mth month of tth year and Yt-1 indicates average tourist arrivals in (t-1)th year. The AR model combined with polynomial function reveals normal and homoscedastic residuals more accurately compared to first one.Conclusion: The use of polynomial function combined with autoregressive model can be useful for time series data having seasonal fluctuation. It can be an alternative approach for picking up a good model for such type of data. Nepalese Journal of Statistics, 2017,  Vol. 1, 41-54

Publisher

Nepal Journals Online (JOL)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring the Influencing Factors and Arrival Patterns of Inbound Tourism in Nepal;Tourism Planning & Development;2024-05-21

2. Optimization and Prediction of Intelligent Tourism Data;2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS);2022-05

3. Classical Forecasting of International Tourist Arrivals to Thailand;Journal of Statistical Theory and Applications;2022-03-19

4. CORRELATION AND REGRESSION ANALYSIS OF TOURISTS SERVED BY TOURISM ENTITIES IN UKRAINE: REGIONAL DIFFERENCES;Індустрія туризму і гостинності в Центральній та Східній Європі;2022-02-11

5. Development of Fuzzy Time Series Model for Hotel Occupancy Forecasting;Sustainability;2019-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3