Classical Forecasting of International Tourist Arrivals to Thailand

Author:

Intarapak Sukanya,Supapakorn ThidapornORCID,Vuthipongse Witchanee

Abstract

AbstractThe objectives of this work are to find the suitable forecasting model and forecasting period of the number of foreign tourists traveling to Thailand. The monthly data is gathered during January 2008 to December 2019 and is divided into two sets. The first set is the data from January 2008 to December 2018 for the modelling by the method of decomposition, Holt–Winter’s exponential smoothing method and the Box–Jenkins. The second is the monthly data in 2019 for comparing the performance of the forecasting models via the criteria of the lowest mean absolute percentage error (MAPE) and the root mean square error (RMSE). The results show that, in term of forecasting, the multiplicative decomposition is the most accurate technique for the short-term (3 months) forecasting period with the lowest MAPE and RMSE of 1.04% and 42,054.29 international tourists, respectively.

Funder

Program Management Unit for Human Resources & Institutional Development

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Statistics and Probability

Reference14 articles.

1. Ministry of Tourism and Sports. Tourism statistics (2021). https://www.mots.go.th/more_news_new.php?cid=411

2. Tourism Authority of Thailand. Policy and marketing plan (2021). https://www.tat.or.th/en/about-tat/market-plan

3. Ministry of Foreign Affairs. Declaration of an emergency situation in all areas of the Kingdom of Thailand (2020). https://www.mfa.go.th/en/content/115754-declaration-of-an-emergency?cate=5f2916be298eeb02ac2eb389

4. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting. Wiley, New Jersey (2007)

5. Tularam, G.A., Wong, V.S.H., Nejad, S.A.S.: Modeling tourist arrivals using time series analysis. J. Math. Stat. 8(3), 348–360 (2012)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3