Calculation of Start-Up Time of Passive Catalytic Hydrogen Recombiner of Localization Safety System of a Nuclear Power Plant Equipped with VVER

Author:

Sorokin V. V.1

Affiliation:

1. Belarusian National Technical University

Abstract

The hydrogen removal system ensures hydrogen safety. At a VVER nuclear power plant, it consists of passive catalytic hydrogen recombiners. The calculation of devices is of great importance for safety justification, since the complex conditions of an accident at a power unit are not reproducible in experiments. The recombiner consists of a casing and a cassette with catalytic elements, the design of which ensures the passage of a gaseous medium through the device. Upon contact with the catalyst, a chemical reaction of hydrogen and oxygen compounds occurs, accompanied by the release of heat; as a result, the concentration of hydrogen under the shell decreases. The problem is starting from a cold state since the activity of the cold catalyst is low, and the thrust is not observed until the catalyst is heated and a column of warm gas is formed inside the device. The transition from the cold state to the working state takes a certain time, during which the recombiner performance is below nominal. The start-up time is a parameter that is important in terms of safety. The article calculates the start-up time of a hydrogen recombiner with a catalytic block in the form of equidistant parallel catalytic plates. Local cross-sectional averages and transmission coefficients are used, the latter taking into account the influence of free convection and chemical reaction. The gas velocity is determined by the balance of buoyant and resistance forces. The calculated data and the data known from the scientific and technical literature coincide satisfactorily. As a conservative estimate of the start-up time of the recombiner, it is recommended to use the value of 300 s. An increase in temperature practically does not affect the start of the recombiner with an active catalyst, an increase in the concentration of hydrogen accelerates the start, and a decrease in pressure slows it down. The results obtained in the study can be used in the justification of the safety of VVER nuclear power plants and the examination of reports on the justification of the safety of power units.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference19 articles.

1. Dmitriev S. M., Gerasimov A. V., Dobrov A. A., Doronkov D. V., Pronin A. N., Ryazanov A. V., Solntsev D. N., Khrobostov A. E. (2020) Investigation of Coolant Local Hydrodynamics in the Mixed Core of the VVER Reactor. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 63 (2), 151–162. https://doi.org/10.21122/1029-7448-2020-63-2-151-162 (in Russian).

2. “SPb Atomenergoproekt” JSC (2009) NPP-2006 Project. Leningrad NPP-2. St. Petersburg, Atomenergoproekt Instiute. 34 (in Russian).

3. AREVA Passive Autocatalytic Recombiner (2013) G-008-V3-13-ENGPB. Erlangen: AREVA GmbH. 4.

4. Arnould F., Bachellerie E., Auglaire M., De Boeck B., Braillard O., Eckardt B., Ferroni F., Moffett R., Van Goethem G. (2001) State of the Art on Hydrogen Passive Autocatalytic Recombiner (European Union Parsoar Project). Available at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/33/020/33020098.pdf (Аccessed 9 February 2018).

5. Kirillov I., Kharitonova N., Sharafutdinov R., Krenniikov N. (2017) Hydrogen Safety for Nuclear Power Plants with Light Water Reactor Units. Current State of the Problem. Yadernaya i Radiatsionnaya Bezopasnost' = Nuclear and Radiation Safety Journal, 84 (2), 1–12 (in Russian).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3