Energy Efficiency of Using Hybrid Heating Points in Conditions of Integration of Electrical and Thermal Networks of Urban Neighborhoods. Part 1. Justification of the Feasibility of Using Hybrid Thermal Points

Author:

Sednin A. V.1,Pozdnyakova M. I.1

Affiliation:

1. Belarusian National Technical University

Abstract

The paper discusses the circumstances and technical solutions that contribute to the integration of electrical and thermal networks of urban neighborhoods within the framework of a surplus of electricity generating capacities arising from the imbalance in the development of energy generation and consumption, stochastic processes of market economy development, the transfer of energy-intensive industrial production to other countries, the desire to diversify fuel energy resources, passion for the construction of energy sources for alternative energy resources in counterbalance to traditional energy facilities without taking into account all aspects of the interaction of the former with the environment, etc. With regard to district heating systems of electrical and thermal networks of urban neighborhoods, the use of hybrid heating points is achieved, which, unlike standard solutions, are equipped with electric boilers, thermal accumulators and heat pumps. According to the time of use of generating capacities, preference should be given to options for covering the hot-water load. Based on the average daily load, the power usage time in this case lies in the range of 6000–6500 hours / year. When choosing the capacity of the equipment, it should be borne in mind that the daily load of hot water supply is extremely uneven and also depends on the  day of the week, while the maximum load exceeds the average daily by 2.5 – 3.0 times. When integrating electricity and heat supply systems, it is advisable to consider options for only night-time electricity consumption or night-time consumption plus consumption during the hours of daytime failures of the electricity consumption schedule. If during the new construction the power of the electrical network may vary depending on the selected option, then during the modernization of the heat supply system, the problem is solved if there is a limitation on the available electrical power. Therefore, the definition of these restrictions is a separate issue. In comparison with the direct consumption of electricity for the needs of heat supply, which is a priori energetically and economically inefficient, the use of hybrid systems in heat supply allows us to solve the multifunctional task of increasing the reliability of energy supply and the stability of the functioning of the power system, which is primarily achieved by solving the problem of balancing the capacity of production and energy consumption from the position of aligning  schedules of energy generation and consumption.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and Optimization of Operating Modes of Mini-CHP on Local Fuels in Conditions of Surplus Electric Power Capacities in the Unified Energy System of Belarus. Part 2;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2024-08-12

2. Investigation of the Composite Motor Load in the Presence of Higher Harmonics in the Electrical Network;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2024-08-12

3. Development of Hybrid District Heating Systems;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2024-04-08

4. Determining of the Maximum Throughput of Control Valve in Heat Supply Systems;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2024-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3